MINIMIZING THE MODULUS

OF THE REFLECTION COEFFICIENT
OF A POLYCHROMATIC WAVE
FROM AN INHOMOGENEOUS
ABSORBING LAYER

I. L. Dorot and M. M. Machevariani ” UDC 534.24

The synthesis is considered of the optimum inhomogeneous absorbing layer of given thickness
under the incidence of a plane polychromatic wave with a known frequency spectrum. The syn-
thesis is treated as a problem in optimum control. The control is approximated as a step func-
tion and the problem is reduced to minimizing a function of many variables. Equations are ob-
tained for the exact calculation of the gradient in the goodness criterion; this gradient is re-
quired in setting up the algorithm for finding the optimum solution., The principal and adjoint
variables and also the Hamiltonian are written in complex form and this greatly simplifies the
intermediate transformations. The optimum solution is sought by using the method of adjoint
gradients [1, 2] with constraints placed on the control. To illustrate the problem, results are
given of computer calculations of an optimum control.

1. Statement of the Problem

Suppose that a plane polychromatic wave of known frequency spectrum %y =f j/ f1 {f 1 is the lowest fre-
quency in the spectrums; fy, f3, ..., fg are the remaining frequencies) is incident normally on an inhomogeneous
absorbing layer which is separated from a homogeneous half-space by a boundary which is characterized by an
arbitrary complex admittance,

The system of differential equations for the dimensionless input admittances Gj of an inhomogeneous
layer has the form [3]

dGyldt = —in;(ng — 67} j=1,....8 ng =1+ (L+in)Q (), (1.1)

where Gj is the input admittance of the layer relative to the characteristic admittance (1/p 4co) of the medium
from which the wave is coming; p,, ¢, are the density of the medium and the velocity of a longitudinal wave in
the medium; ny=cy/c(t), c(7) is the velocity in the inhomogeneous absorbing layer; 7 = (27rf1/co)x is the re-
duced thickness of the layer bounded by the planes x=0 and x=1[ ; x is the coordinate; 7 is a given positive
constant; Q(7) is a nonnegative function which satisfies the condition

0 Q) < M. (1.2}

In accordance with the terminology used in optimal control theory we henceforward refer to Q{r) as the
control function,

We take the values of the input admittances on the boundary 7 =0 to be
GiO) == po +iqe, J=1,... s (1.3)

The reflection coefficient of a monochromatic sound wave depends on the freguency and is determined by
the value of the dimensionless input admittance Gj= pj +iqj; on the boundary 7=7; [4]

By= (6 —1)[(6P +1), j=1.....5.
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For a polychromatic wave we can characterize the reflection by means of the energy coefficient

5 B O )2 L[ (D)2
Y= Zejlﬁ; = Ve (2 = 1)+ () ) (1.4)
j=1, i=1

aned (pg,l)_l:_i'?._:_{q;l)JZ

where ej is the energy spectrum of the wave and pj and gj are the real and imaginary parts of the acoustic
admittance Gj.

Thus the problem of optimum synthesis consists in finding the control function Q(7) which satisfies con-
dition (1.2) and the minimizing functional (1.4).

2. The Construction of an Approximate Model

of the Optimum Synthesis Problem

As was suggesteqk in [5] we make use of the auxiliary complex form for writing the adjoint variables

{Lagrange functions) Aj =A]p—i’\fl. We can write in the same form the Hamiltonian

-— 3 QdG kd - 2
H-FEA,--‘#:—tE-/.,x,- t+d+-imow—a3. @2.1)

=1 =t

~.

whose real part is used to construct the Pontryagin maximum principle in the theory of optimum systems.
Since the Hamiltonian (2.1) depends linearly on the control Q(7), we can assume in accordance with this prin-
ciple that the optimum controls are tc be found among piecewise-constant functions and can take only ex-
tremal values; i.e., the optimum inhomogeneous absorbing layer can consist of alternating homogeneous con-
trols with zero and maximum values. The number of homogeneous layers which make up the optimum inhomo-
geneous layer is determined by the number of zeros in the switching function

K=Re?®: _ _Re LN (1 i) gk
=Re <5 = ~ ) Zjhy -

For positive values of the switching function the control is equal to zero, and for negative values it is a maxi-

mum, The optimum synthesis problem therefore reduces to finding the zeros of the switching function and
this involves solving a two-point boundary-value problem,

It is, however, possible to approach the problem in another way, starting from an approximate model.
We assume that the inhomogeneous absorbing layer consists of n homogeneous layers of equal thickness, for
each of which the control function is constant and equalto@y (k=1,..., n),0= QK =M. The differential equations
forthe input admittances (1.1) for each of the layers can now be integrated:

1 ; K
G'; (- 0)—ib, tgy;

k
" —0) = s
Ge=0 1 —iG3 (+0) 8 "tg ¢} 2.2)
ho=t/n. ‘lr]; = h'/.,'&,‘- Oy == V’m
k=1,....n.  j=1,...s.

Since the acoustic admittance changes discontinuously through the boundary between the two media, i.e.,
G+ 0) =6} —0),
the system (2.2) can be written in the recurrent form

Gy tk—1)— b, gy} (2.3)
T 1—iG, (k—1) &, Ttg gt
h o= T,/n. 'l;? = ’l‘/.jﬁk, Gk-: ]/1 —+ Qh - il]OI:‘

k=1,....n, i=1...s

G; (k)
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and when the control vector { Qx} and the initial conditions (1.3) are known we can uniquely determine the
value of the admittance Gj(l) =Gj (n) on the boundary with the external medium and thus calculate the reflection
coefficient (1.4).

Thus, the reflection coefficient of a polychromatic wave is a unique function of the n variables Qurk =
1, ..., n) which satisfy condition (1.2}, and the problem of optimal control reduces to the minimization of a func-
tion of many variables.

We might expect from physical considerations that the approximate model of an optimum inhomogeneous
absorbing layer will be sufficiently accurate providing the thickness of the homogeneous layers h= 17/n is
smaller than the thickness of a homogeneous layer with Qu =M which would pass a significant amount of the
energy of an incident wave at the highest frequency of the linear spectrum.

3. Calculation of the Gradient of the Minimizing

Function

Effective numerical methods of solving optimization problems require a knowledge of the gradient of the
minimizing function or a method for calculating this gradient. In the present problem with an arbitrary number
of variables n, the minimizing function cannot be written analytically; however, its gradient can be calculated
exactly by the method described in [6].

As we pointed out, we make use of the complex form of the relevant expressions in order to sim-
plify the intermediate transformatlons which occur in the derivation of the equations for the gradient of the
goodness criterion. Thus, in the formulated discrete problem (2.3), (1.3), (1.2),and (1.4) of the optlmum control
we can use the expanded criterion

J=y— 3 Be 3 a5 (1) (¢ (60— 1).Qpo ) — G, (k). (3.1)

k=1 i=1

where ¢ (Gj(k—1), Qk, ®j) are the right sides of (2.3); A (k) = AJ (9] —17\%1(k) are the complex Lagrange multi-
pliers. It can be scen that the expanded criterion (3.1) lS 1dentlca1 with the functional (1.4) when condition (2.3)
is satisfied,

We introduce the complex-function series

Hy (k) = v; B @ik — 1,042, k=1, ....n, {3.2)

j= l

so that the first variation of the functional (3.1)

oy

8/ ]h‘j‘_\_: 7, @ .qu(n)J 8G ;(n)y — 2. (1) 86 (n) -
' dif, (&) u//, ( )
‘}.:{T,MTT) A(lx—-l)]a(;(x-—l}4R 2 80,
kns k=1
can be obtained in the form
il (k)
8/ ‘\_‘; u() 8Qu- (3.3)
=1
if the complex Lagrange multipliers are chosen to satisfy the conditions
}-.; (n) — 8vy/dp;(n) — idv,dq;(n), j=1,....5 (3.4)
Ay (== D)o 0], (RYAG (h — 1), G 1, ... . so k=n, .0,
From (3.2) and (2.3) this condition becomes
2 =1y I (=@ T 6y e g ], (3.5)

jo-ls s. I T

From (3.3) for the variation of the functional we get the equations for the componcents of the gradient of
the goodness criterion

0T10Q, = RedH, (/00w & = i. . . ., n. (3.6)
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Replacing the complex functions Hy (k) in (3.6) by their expressions in terms of the principal variables
Gj(k—1) and the Lagrange multipliers A% (k), we obtain the final equations for calculating the components of the
gradient of the criterion from the known solutions of the straight lines (1.3) and (2.3) and of the discrete equa-
tions inverse to (3.4) and (3.5):

a7 S \ (n—1) ‘ (ke ! (l‘z (k) = Y ;3 4 Ghlz (I‘) )
50, = Re “"f % l[ 2 (k—1) —7T,_, Aj (k) gyt + 1 — 5 Pi3 (Rt
= i }
k=1,...,n.

4, Minimization Algorithm and Results

of the Calculations

~ We have considered the minimization of the functional (1.4) for the case where the energy of the incident
 wave is distributed uniformly over the different frequencies, i.e., where ey = 1/s. A preliminary analysis of the
reflection coefficient (1.4) as a function of the control parameters Qi (k=1, ..., n) showed that there were deep
chasms in the functional which make it difficult to find the optimum solution. Functionals with this type of
trelief" are characteristic of synthesis problems in both acoustic and optical multilayer media [7].

In order to find the optimum solution we have used the two-step procedure of the adjoint gradient method
{1, 2], since the simplest one-step algorithm of steepest descent shows only slow convergence when there are
chasms in the minimizing function. The chosen algorithm is

Qm—‘,»l . Qm. __‘ ampm:

ol (Q™M) e
o -_[—— o By kL
k= h

0 * 1‘ = Im;
2t J(QM - ctpp™) = min J{Q™ = ap™),

Sy, |

G =max (2 0L +apt <M. k=1,....a);
l Iee\—l,,, (a0 (@™)io0, )
B =1 X (er(emThe k=0, Ly=Leie
kST,
0 . k=0 o [I,==1,_,
o= 15U T

|tk QR ==00 0T (QM)10Q, >0). m =0 o
Iy =107 (Q™)/0Q,, =0 for all kgt I,
Ly U ks O = () in the remaining cases;
. [ fe: Q=M. aJ(Q")dQ, <0}, m=10 O
I, =157 (Q™)9Q, =0 for all kel
II;_I U {k: Qi =M} in the remaining cases,

By means of this algorithm we have synthesized an optimum layer with a reduced thickness 77 =1 and an
absorption coefficient 7 =0.7. The control function which characterizes the properties of the material was
taken to be in the region 0=<Q(7) =<10. It was assumed that the absorbing layer was bounded by a medium with
zero admittance (py=0, qy =0) and was acted on by a plane polychromatic wave with the frequency spectrum
%y =1, ny=1.5, ng=2, ny =2.5.

In order to carry out the iteration procedure for finding the optimum inhomogeneous layer we used an
initial control corresponding to the optimum homogeneous layer. A large number of control parameters (n=50)
was chosen, and this enabled us to find a solution (Fig. 1) which was close to the optimum solution for the con-
tinuous problem. The energy reflection coefficient was found as ¥min=0.080056825. The result confirms the
relay nature of the optimum control which we mentioned in §2.

If only a small number (n=5) of parameters is used, it is not possible to see the on/off nature of the op-
timum control (Fig. 2). However, such an approach has the advantage that it requires a shorter calculation
time, andit gives a satisfactory value of the minimal reflection coefficient {Ymin =0.096415685).
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DYNAMICS OF THIN FILMS
IN A MAGNETIC FIELD

V. M. Sorokin and G. V, Fedorovich ‘ UDC 534.28

The oscillations of thin conducting films placed in a magnetic field are considered, The effect
of the field in different directions on the effective elasticity of the film is described and disper-
sion relations are obtained for longitudinal and transverse waves,

It is well known from the theory of elasticity [1] that the properties of strain waves in an isotropic me-
dium are different from those of waves in thin films., For example, waves which are normal to the plane of the
film exhibit dispersion and the phase velocity of longitudinal waves is altered. We might expect that new defor-
mation modes will occur in a conducting film placed in a magnetic field and that the properties of these will dif-
fer from those of magnetic-field transport waves owing to the deformations in the three-dimensional elastic
conducting medium,

Effects related to the presence of an external magnetic field should begin to appear at much smaller
field values because the characteristic velocity in a magnetic field increases as the thickness of the film is
reduced. For thin conducting films it is possible by proper choice of the parameters to get the magnetoelastic
velocity greater than the velocity of sound; i.e., the nature of the strain propagation in the film will be deter-
mined mainly by the magnetic field.

We shall consider the propagation of deformations in a thin perfectly conducting film of thickness d
placed in an external homogeneous constant magnetic field H. In order to get the equation for the defermation
u, we make use of the equilibrium equations for a thin elastic film [1], We introduce a Cartesian system of
coordinates X, y, z so that the film lies in the (x, y) plane and the external magnetic field is in the (x, z) plane
at an angle « to the x axis. For the displacement u, we have

(Ed*/12(1 — )] A 2u, — P, = 0. oy
For the displacements ux and uy we have
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